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Abstract

Two non-ideal, multiphase chemica reaction equilibrium algorithms are presented.
An approach to multiphase equilibrium calculations due to Abdel-Ghani et al. [1, 2] was
modified to include reaction equilibrium, exploiting two proposals by Michelsen [3,4]. In
both agorithms, nested processes are used with an inner loop treating the phases as ideal
solutions and an outer loop updating non-ideal parts of the models. Both of the algorithms
were initiated with a number of phases which was reduced in the outer loop by combining
phases as they approach the same composition and density. Initiation strategies for phase
amounts and compositions are presented.

Introduction

Thereis an extensive literature on phase and chemical equilibria calculations, most of
which concentrates on ideal gas systems with a possibility of pure condensed, or solid,
phases. Non-ideal systems have been a concern, but not a focus, in the computational
aspects of chemical equilibria until recently. Zeleznik and Gordon [5] reviewed methods
available prior to 1968, van Zeggeren and Storey [6] published the first monograph
dedicated to this area, and Smith [7] wrote an additional review of the material just prior to
Smith and Missen’s [8] publication of a second monograph dedicated to chemical and phase
equilibria calculations. Additional reviews include those by Seider et al. [9], Mather
[10].and Seider and Widagdo [11].

The two papers closest to ours in intent are by Castier et al. [12] and Gupta et al.
[13]. Both present methods for computing reaction equilibrium in non-ideal multiphase
systems with more than one phase described by the same model. Determining a correct
equilibrium when phases can split due to interna instability is a significant problem [14].
Both Castier et al. and Gupta et al. make use of atest of the stability of equilibrium that was
proposed by Michelsen [15]. Castier et al. begin with a smal number of phases, compute
the reaction and phase equilibrium, test stability with respect to the addition of a new phase,
then recal culate the equilibrium with an increased number of phases if an additiona phaseis



required. The process continues until a stable solution is reached. The steps during which
stability is tested require iterative computations, with a number of trial phases covering the
composition space as starting points in searching for alternative equilibrium phases. Gupta
et al. begin with the maximum number of phases anticipated at equilibrium. Michelsen's test
is used during the solution process in determining which of the phases initiated remains in

the solution.

Basic issues in structuring calculation methods arise in the handling of the
stoichiometry or mass conservation equations, the way the equilibrium criteria are posed, the
form used for the chemical potential models and the choice of independent variables in the
computations themselves. The C species in a reacting mixture are possibly distributed

through p phases with molar amounts njj ;i =1---C:j=1---p. The j" phase has mole
fractions xjj and total amount b;. The total moles of speciesi in all the phases is denoted

by N;, which can be calculated in two ways; i.e.,

N;j © g njj = g-bjxij (1)
j=1 =1

Any chemical reactions can cause the total moles of the individual species to change but
linear constraints (typicaly the equations representing conservation of the elements) must be

obeyed. These constraints are written;

AN-b=0 )
or, ADN =0 (3
where DN isthe difference between any two set of mole numbers that satisfy the constraints

or, more particularly, DN =N- N°, where N° is a reference or initiad set. The k

components of vector b are constants determined by the content of the equilibrium system:

i.e, b=AN°. There are M linear constraint equations and the matrix A has elements

&j;k=1--M:i=1---C. We assume that any redundant equations have been eliminated



from equation (2) and that the number of speciesis at least equal to the number of constraint
equations; i.e.,, C3 M.

An dternative way to represent mass conservation is through chemical reactions and
reaction extents. In this approach the mole numbers are tracked through a parametric

solution of equation (3) in the form;
DN=N- N°=nx (4)

where ny;i1=1---,C:k=1---,R is a matrix of stoichiometric coefficients and
Xk, k=1---,R is a vector of reaction extents. The number of linearly independent

reactions, R, isequal to C- M given the assumption that there are no redundant equations

in (2). The reaction coefficients can be found as solutions of:
An=0 ©)
Smith and Missen [8] provide further analysis of these approaches to stoichiometry.

The equilibrium criteria are well known but must be stated carefully in calculations
on multiphase systems where the number of equilibrium phases must be determined in the
computations. At equilibrium, the chemical potential of a speciesi must have the same value
in every phase actually present. In multiphase computations, some phases postulated may
not actually be present at equilibrium. Michelsen [15] developed a "stability” test for phases
not present at equilibrium based on the Gibbs tangent plane criterion. Equilibrium and
stability can be expressed compactly by the relation:

mj - Dj =M (6)
where Dj3 0 and is zero for phases present. When these equations are satisfied, the
variable, Dj, has a geometric interpretation as the minimum distance that the j"" free energy
surface lies above the common tangent plane that defines the equilibrium.

Reaction equilibrium criteria are super-imposed on the phase equilibrium and stability

criteriain equation (6). These can be expressed in two equivalent ways. The first involves a



set of Lagrangian multipliers | ;k=1,---,M that are introduced when the Gibbs free
energy is minized under the constraints of equation (2). That is;

N T N M
m=RTA'l ,or, M =RT & al « (7
k=1

The aternative expression uses the stoichiometric coefficients in the reaction equations;

Ta S .
n'm=0;o0r, & Ny =0 (8)
i=1
In the calculations reported here, al the phase models are based on the same
equation of state. Furthermore, al the phases are mixed phases and all components are
constituents of every potential phase. The chemical potential of the i component in phase j

iswritten in terms of the fugacity, then the mole fraction and fugacity coefficient;
mj :nP+RTInfij :n‘P+RTIn(XijfijP) (9)

wheren]O is the standard state chemical potentia of i and is the same in al the phases. The

computation of equilibrium and stability together is facilitated by introducing a composition

variable equivalent to a mole fraction before normalizing, Xjj. In terms of this variable,

eguation (9) can be written;

¢
m; + RT |n_a1xij =nf +RTInX;; +RTIn(f P) (10)
1=

C

o, mj- Dj=nf +RTInX;; +RTIn(fP); with, D ° -RTIn & X; (12)
i=1

and serves the purpose of the "minimum tangent plane distance” in the Michelsen [15]

stability test. All the necessary equilibrium and stability criteria are met when Xj; and phase
amounts are found that satisfy the mass balance constraints of equation (2), the phase
equilibrium criteria in equation (6), and the reaction equilibria criteria in equation (7) or
eguation (8).



Computational Algorithms

Reaction equilibrium computationa methods are routinely classified as
"Stoichiometric" if reaction extents and equation (8) are employed to keep track of the
stoichiometry and "Non-Stoichiometric” if Lagrangian multipliers and equation (7) are
employed (Smith and Missen [8]). In this paper, we present adaptations of two algorithms
recently proposed by Michelsen [3,4] for systems potentially containing many ideal phases.
One of the Michesen agorithms [3] is "Non-Stoichiometric® and the other [4] is
"Stoichiometric". The adaptations are in the methods for dealing with non-ideal phases
described by equations of state and in details of handling the equilibrium equations.

We use a nested approach in both algorithms described here. In an inner loop, the
compositional dependence of fugacity coefficients is ignored and phase amounts and
compositions that satisfy all the equations are found. Then the fugacity coefficients are
updated in an outer loop and the process is repeated until outer loop convergence is
obtained.

Stoichiometric Algorithm. The approach to mulitphase equilibrium computations of

Abdel-Ghani et al. [1, 2] is used. The common chemica potential (hence, fugacity) for

substance i in the coexisting phases is taken as a weighted average; i.e.,

=1

L _ 2P 0 /p ;2P o /p
mzéabjmj: abj; or, In fi:éa bjlnf”: abj (12)
i=1 j i=1 9/ ]

There is no particular composition associated with this average chemical potential and
fugacity, but in these calculations of phase and reaction equilibria we have found it

convenient to to write;
fi = %fiP (13)

Note that the product >?ifA i isdefined through this equation. Note also that phases present in

zero amount (and in which the chemical potentials need not equa the chemical potentiasin

the other phases) do not contribute to the weighted sums. Also, the phase amounts do not



necessarily sum to unity and their sum may change as chemical reactions proceed and alter

the total number of molesin the system.

Phase equilibrium K factors are defined using the average fugacity rather than the

fugacity in any one of the coexisting phases. This definition yields;
xij = (Fi /1 £5)% = Ky (14)
The usual mass balances permit solution for the Xj; in terms of the phase amounts, giving;
Xij = KijNj /Ej;  where, Ej° k§ Kikbk (15)
=1
The X; variables have dropped out of these equations and could have been fixed arbitrarily,

however the choice X; = N; is one way to provide a convenient scaling for the equations.

Inner Loop Calculations. With a smilar formulation (but differing in severa details),

Michelsen [4] showed that the stability, phase equilibrium and reaction equilibrium criteria
are obtained as the minimum point of a convex function. The convexity of the function is a
crucia property since it assures uniqueness of the minimum and serves as a guide in the

development of solution procedures. The comparable function in our formulation is,

C R
ngbj+éN¢$/RTHnMﬁP-ma-g (16)
j=1 =1

The function Q is minimized with respect to the phase amounts (which must be non-

negative) and the reaction extents. The minimum point is characterized by

h°@@/%) 1 gNK/E 1 °Cx":O;bj>0 (17)
- j)=1- ANiKj/Ei=1- & X5 _
. . i=1 o I i=1 IJT>O’bj =0
s : S .
and, Ik 0 (ﬂQ/ﬂXk) =a nik(n]ol RT + In[Nif iP/ Ei]) = a njm =0 (18)
i=1 i=1

Equation (17) with equations (12) and (14) assures that the chemica potentials within a

phase present in a non-zero amount are equal to the equilibrium values. The inequality for



phases in zero amount assures that the missing phase should not form. Equation (18) is the

equation for reaction equilibrium using the stoichiometric formulation.

Equations (17) and (18) can be solved efficiently and safely by Newton-Raphson
iteration so long as precautions specified by Abdel-Ghani et al. [1,2] are observed. When a

phase amount j is zero, (bj = 0), it is not included as a variable in any equation other than
hj = 0. The Newton step sizeis controlled to permit only one bj to move from positive to
zeroin agiven iteration. Negative values are never permitted.
The Jacobian elements in the Newton-Raphson process are;
C C
172Q / oy, Tb j= i;‘illxij Xim / Ni; 72Q/ X Xs = élniknis I N;
C

ﬂZQ / ‘ﬂbj‘ﬂxk =- _élnikxij / Ni (19)
=

Outer Loop Calculations. In the outer loop, the mole fractions are normalized, the

fugacities are al recalculated at the new compositions, then the Kj; are updated in the outer

loop through the successive substitution relationship;

InK{D =ink - (In ;- Inf - q) (20)

C
with qj 0 -Dj/RT:- Inéxij (21)
i=1
Converged solutions from this process can include compositions of incipient phases, missing

from the equilibrium mixture, which can enter if the temperature, pressure or overall

C
composition is altered. The variables ¢; >0 and a Xjj <1 indicate a kind of "distance" the
i=1

conditions must be moved before the phase would appear.

Non-Stoichiometric Algorithm. In an extenson of Michasen's non-stoichiometric

algorithms for ideal phases [3], we treat non-normalized mole fractions as dependent



variables determined by the Lagrangian multipliers. Equations (6), (7) and (10) are

combined to give;

M
m; - Dj =nf +RTInX;; +RTIn(f;;P) = fy = RT & agl | (22)
k=1
M
then solved for, InX;j = & al - nf /RT - In(t;P) (23)
k=1

Inner Loop Calculations. In the inner loop of these nested calculations, the fugacity

coefficients are regarded as independent of the phase compositions. The independent

variables are the phase amounts (the bj) and the Lagrangian multipliers (the | ). The

equations that must be satisfied are;

ho= S8 x: - 19 0P >0 (24)
=éaXi-W_~n
I as Y G<0b;=0
and the M linear mass balance constraints, written here as;
¢ ep 0
Ik :-bk+aaki aijij;=O (25)
i=1 éj=1 7]

These equations are used to solve for M Lagrangian multipliers and p phase amounts by
Newton-Raphson iteration. Care in handling phase amounts at the zero constraint is
necessary here, as in the "Stoichiometric" algorithm. Also, no more than M phases can be

included in any oneiteration to avoid having a singular Jacobian matrix.

The derivatives in the Jacobian matrix are;
S S

Mm /M, =aaga,; N;; Tl /'ﬂbj ='|]hj I [ =a a X ; 'ﬂhj /b, =0 (26)
i=1 i=1

Outer Loop Calculations. The purpose of the outer loop is simply to update the fugacity

coefficients to reflect the new phase compositions returned from the inner loop. The

convergence criteria are the same as are used in the stoichiometric technique.



Initiation. A key step in the initiation is to determine which species are likely to be most
abundant at equilibrium. In the stoichiometric procedure, linear programming is used to find

the minimum of the function;

GzéCNi(n]O/RTHnP) 27)
i=1

subject to the constraints that AN =b and al of the N; are non-negative. The Simplex
Method described in Chapter 10 of Fraleigh and Beauregard [16] is used. The method

resultsin asolution with C- M of the mole numbers zero, a reordering of the species and a

modified constraint equation;

éN reactant 3 b* (28)

AN =[I A] M

In equation (28), the vector of mole numbers has been partitioned demonstrating that a set

of chemical reactions can be written immediately. Those reactions are:

éN u U & Ay
N = S reactantsU_ o o _ §b ? 2U (29)
eN a é ute s
products {j 60g el u

These equations identify the mole numbersof C- M "product” species as identical with the
reaction extents and provide numerical values for the N°. This process for constructing the

chemica reactions taking place and the feed molar amounts reduces the likelihood of

catastrophic cancellation in calculating mole numbers of trace species.

Positive reaction extents are required in order for computations to proceed. Initial
values, XE, are obtained from the reaction equilibrium equations (8), which, with the

reactions in equation (29), can be rewritten;

ik / RT +In{xRP /& b ):-_a n,k[nP/RTHn(b P/&b )] (30)



This initialization uses the feed molar amounts of the first M (reactant) species to compute
mole fractions and treats the mixture as an ideal gas. Given theinitial x, values, all C of the
mole numbers are calculated from equation (29). There is a possibility at this point that
some of the mole numbers of "reactant” species may become negative. This can be avoided
by dividing al theinitial x, by a constant factor. Positive feed mole fractions for al species
are computed from zI N / a Nk

k=1

Initial phase amounts and compositions that satisfy conservation of mass for C+1

phases are computed from,
. .1/c+1 J=1 31
i~ AZJ 1C/(C+1) ; 2EJjEC+1 (59
120 ; j=1; 1£i£C
x; =1099+001z° ; 2£ jEC+1; i=j-1 (32)
1001z} , 2EJECH+1; it j-1

Thefirst of the phasesis treated as a vapor, the others asliquids.

The non-stoichiometric procedure requires initial values for the M Lagrangian
multipliers and the p phase amounts. The initial number of phasesis set equal to the number

of constituents plus one and the compositions of each of these phasesis found from equation
(32), using the feed composition for zio. Fugacity coefficients, f,J, are evaluated. Then
linear programming is employed to minimize the function;
C+1C
G= 3§ an,J[nP/RTanﬁP (33)
j=1li=
subject to the linear constraints in equation (2), but treating each of the nj; as independent.

The A matrix, in this case, has dimension M by C(C+1). The linear program returns only M

positive mole numbers containing all the mass, distributed through as many as M phases.
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These numbers are used as the phase amounts in the active phases at the start of the
calculations. In addition, a reduced and reordered A matrix is obtained with a leading M-

dimensional identity matrix. From thislarge A matrix, an A" matrix with the dimensions as
in equation (28) can be set up. The initial values of the M Lagrangian multipliers are found

from;

li=nP/RT+InfdxfP;i=1- M (34)
where mole fractions xicj) areincluded in case an initial phase contains more than one species.

Once the phase amounts and the Lagrangian multipliers have been initiated, al the

functions needed for updating and convergence of the inner loop can be evaluated.
Example

Space permits documenting the performance of the two agorithms in only one
example, a system that was examined by Castier et al. [12] and Guptaet al. [13]. Methanol
is produced from a mixture containing carbon monoxide, hydrogen, carbon dioxide and
water. Also present are methane and normal octadecane as inert species. Potential reactions
involving methane or octadecane conversion, such as steam reforming to carbon monoxide
and hydrogen, are prevented by adding equations to the linear constraints showing that the
two mole numbers are constants. The total number of constraint equationsis M =5 and
the species count gives C = 7. The composition of the initial feed stream is shown in Table
1. The SRK equation with conventional mixing rules is used as the thermodynamic model,
with ideal gas chemical potentials taken from [17]. The parameters used in the SRK model

arethe same asin [12] and [13].

The computations, as we carried them out, required initiation of 8 phases with
chemical reactions that were dealt with through 2 reaction extents in the stoichiometric

method or 5 Lagrangian multipliers in the non-stoichiometric method.
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Iterations Methanol Reaction Reaction Vapour Aqueous HC
P(MPa) St. NSt. Produced Extentl Extent2 Phase Phase Phase
0.1% 6 7 0.0000 3.86E-03 3.82E-05 0.9654 (0.0079)° 0.0347
0.5 7 7 0.0010 3.82E-03 1.02E-03 0.9346 (0.0410) 0.0654
1 8 11  0.0040 3.64E-03 4.00E-03 0.9292 (0.0840) 0.0708
2 10 13 0.0138 3.08E-03 1.38E-02 0.9223 (0.1824) 0.0777
4 12 14 00376 2.03E-03 3.76E-02 0.9068 (0.4348) 0.0932
6 13 15 0.0599 1.36E-03 5.99E-02 0.8858 (0.7367) 0.1142
8 18 17 0.0867 9.24E-04 8.67E-02 0.8111 0.0415 0.1474
10 25 22 01381 4.05E-04 1.38E-01 0.4899 0.2957 0.2145
1013 25 21 01402 3.79E-04 1.40E-01 0.4740 03082 0.2178
12° 20 21  0.1553 1.64E-04 8.72E-03 0.3374 0.4133 0.2493
14 21 23 01601 851E-05 398E-03 0.2760 0.4552  0.2688
16 21 24 01620 5.07E-05 2.14E-03 0.2397 0.4755 0.2848
18 21 24 01629 3.28E-05 1.28E-03 0.2128 0.4876  0.2996
20 21 25 01634 225E-05 8.18E-04 0.1903 0.4956 0.3141
25 21 24 01639 1.04E-05 3.31E-04 0.1421 0.5078  0.3501
30 22 26 01640 5.65E-06 1.63E-04 0.0982 0.5147 0.3871
35 23 26 01641 3.40E-06 9.05E-05 0.0552 05194 0.4254
40 22 28 01641 2.20E-06 551E-05 0.0120 0.5227  0.4653
45 23 35 01642 164E-06 3.87E-05 (0.9794) 05295 0.4705
50 31 33 01642 1.29E-06 2.90E-05 (0.9554) 0.5370 0.4630
55 43 57 01642 1.05E-06 2.23E-05 (0.9358) 05437  0.4563
60 24 34 01642 8.58E-07 1.75E-05 05496  0.4504
65 23 28 0.1642 7.14E-07 1.39E-05 05550  0.4450
Feed - CH,: 0.0214 CO: 0.1071 H,: 0.5286 CO,: 0.0571
CH;0OH: 0.0000 H,0: 0.2143 C;gH4g: 0.0715
Temperature is 473.15 K and methane isinert in al runs.
& Subsequent Reactions are: H,+CO,®Y CO+H,0  3H,+CO,% CH,OH+H,O
® Subsequent Reactions are: CH;OH® CO+2H,  CH,OH+H,0% 3H,+CO,

¢ Parenthesis indicate an incipient phase, the number being the sum of the mole fractions.

Table 1 - Methanol Synthesis Example.

12




Table 1 summarizes the results of the computations at a temperature of 200 °C and
over a pressure range from 0.1 MPato 65 MPa. Pressure favors conversion of CO and CO,
to methanol and virtually complete conversion is obtained at pressures above 30 MPa (which

isatypica pressure at which methanol manufacture has been carried out).

The model used shows that three phases persist over the pressure range between
roughly 8 MPaand 40 MPa. The liquid splitting is largely due to the presence of both water
and octadecane in the mixture. At lower pressures, the water-rich liquid does not appear
and at higher pressures, the lighter compounds such as hydrogen and methane dissolve in the

two liquids and the light phase (which we refer to as a vapor) is absorbed.

The number of phases, which is initiated in this example at 8, is reduced by
combining phases as they become identical. However, phases in zero amount but with mole

fractions different from the coexisting phases are not deleted. The quantity § Xjj , which is

less than 1 for these "incipient” phases, is given in parentheses in Table 1 in place of the

phase amount.

The initiation schemes described permitted the two algorithms to arrive at the same

result at all the pressuresin the table.

In general, the non-stoichiometric technique was more difficult to control than the
stoichiometric technique, at least in completing this example. In some cases, the inner-loop
Newton-Raphson routine did not converge or produced large changes in the Lagrangian
multipliers between iterations, sometimes on a scale that caused numerical overflow. These
difficulties, and others, were easily avoided by using two separate damping factors. one
factor to ensure that the Lagrangian multipliers did not change by more than 10% per
iteration and another factor to ensure that, at most, only one of the phase fractions became

zero during a single iteration. Phases that were not active at the start of the Newton-
C

Raphson procedure were added if a Xj; became greater than unity. The addition of a
i

phase was permitted only after the third iteration, only one phase was added at a time,
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C
according to which a Xj; was larger, and the phase was introduced with an amount
b, =10°°.

The stoichiometric technique, once initialized as described with reaction extents that
produced positive mole numbers for all species, was relatively trouble free. The chemical
reactions that resulted from the linear programming step, depended on the specified
pressure, and are indicated in Table 1.

Iteration counts in the outer loops of the two agorithms are shown in the Table.
Inner loop iterations were typically 10-15 in the early stages, dropping to 3 later. The initial
8 phases were reduced to 3 in the outer loop of the algorithms in relatively few iterations
and the total iteration count was not prohibitive at any pressure. The temperature of 200 °C
is apparently not particularly close to any critical condition in these mixtures, or larger
iteration counts could be expected. The maximum number of outer loop iterations occured
at 55 MPa, near the pressure where it became impossible to locate an incipient phase rich in
the light components. The disappearance of an "incipient” phase occurs when the phase

becomes locally unstable, and this property is responsible for the high iteration count.
Conclusions

The two new agorithms proposed for phase and reaction equilibrium in non-idea
systems make use of Michelsen's techniques for ideal phases [3,4] in nested successive-
substitution approaches. The possibility of several mixed phases being present at equilibrium
is dealt with using the approach of Abdel-Ghani et a. [1, 2] which involves initiating the
calculations with a large number of phases rather than adding phases if indicated by stability

tests on converged solutions with fewer stages.
[teration counts in the cases examined were not excessive.
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